Traction forces generated by locomoting keratocytes

نویسندگان

  • J Lee
  • M Leonard
  • T Oliver
  • A Ishihara
  • K Jacobson
چکیده

Traction forces produced by moving fibroblasts have been observed as distortions in flexible substrata including wrinkling of thin, silicone rubber films. Traction forces generated by fibroblast lamellae were thought to represent the forces required to move the cell forwards. However, traction forces could not be detected with faster moving cell types such as leukocytes and growth cones (Harris, A. K., D. Stopak, and P. Wild. 1981. Nature (Lond.). 290:249-251). We have developed a new assay in which traction forces produced by rapidly locomoting fish keratocytes can be detected by the two-dimensional displacements of small beads embedded in the plane of an elastic substratum. Traction forces were not detected at the rapidly extending front edge of the cell. Instead the largest traction forces were exerted perpendicular to the left and right cell margins. The maximum traction forces exerted by keratocytes were estimated to be approximately 2 x 10(-8) N. The pattern of traction forces can be related to the locomotion of a single keratocyte in terms of lamellar contractility and area of close cell-substratum contact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Propulsive and Adhesive Traction Stresses in Locomoting Keratocytes

Strong, actomyosin-dependent, pinching tractions in steadily locomoting (gliding) fish keratocytes revealed by traction imaging present a paradox, since only forces perpendicular to the direction of locomotion are apparent, leaving the actual propulsive forces unresolved. When keratocytes become transiently "stuck" by their trailing edge and adopt a fibroblast-like morphology, the tractions opp...

متن کامل

Force transmission in migrating cells

During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cel...

متن کامل

Keratocytes Generate Traction Forces in Two Phases□V

Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewt...

متن کامل

Keratocytes Pull with Similar Forces on Their Dorsal and Ventral Surfaces

As cells move forward, they pull rearward against extracellular matrices (ECMs), exerting traction forces. However, no rearward forces have been seen in the fish keratocyte. To address this discrepancy, we have measured the propulsive forces generated by the keratocyte lamella on both the ventral and the dorsal surfaces. On the ventral surface, a micromachined device revealed that traction forc...

متن کامل

Slipping or Gripping? Fluorescent Speckle Microscopy in Fish Keratocytes Reveals Two Different Mechanisms for Generating a Retrograde Flow of Actin□V

Fish keratocytes can generate rearward directed traction forces within front portions of the lamellipodium, suggesting that a retrograde flow of actin may also occur here but this was not detected by previous photoactivation experiments. To investigate the relationship between retrograde flow and traction force generation, we have transfected keratocytes with GFP-actin and used fluorescent spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 1994